miércoles, 20 de octubre de 2010

CLASIFICACIÓN DE EXPRESIONES ALGEBRAICAS

Por el número de términos:
Monomios: un término→P(x)= x²
Binomios:dos términos → P(x)= x+4
Trinomios:tres términos→ P(x)= x²-2x+1
Polinomios: cuatro términos o más → P(x) =2ax2+3bx+4xy+13
Por el grado:
El grado de un polinomio puede ser absoluto y con relación a una letra (literal).
a.Grado absoluto.- El grado absoluto de un polinomio es el grado de término de mayor grado, por ejemplo, x5-2x3y+4, el primer término es de quinto grado y el segundo de tercer grado; por lo tanto el polinomio es de quinto grado. 
Clasificación por grado absoluto
Pueden ser de cero, primero, segundo, tercero, etc. .... según el grado del término de mayor grado
Polinomio de 0 grado:
se les llama funciones constantes (excluyendo el polinomio cero, que tiene grado indeterminado),ej:
P(x)= 4
Polinomio de primer grado: se escriben de la forma: P(x) = ax + b, donde a y b son constantes.Son funciones lineales.
Polinomio de segundo grado: son de la forma: P(x) = ax² + bx + c, Ejemplo: P(x) = x² – 3x + 6, P(x) = x² + 3x. Son funciones cuadráticas.
Polinomios de tercer grado: Son funciones cúbicas
b.Grado relativo.-es con relación a una letra.- El grado de un polinomio con respecto a una letra es el mayor exponente de esa letra o literal, por ejemplo, 4x4+x3+y5; si buscamos el grado con respecto a la letra x, el pol inomio será de grado cuatro; de igual forma el grado del polinomio con respecto a la letra y será de quinto grado.


No hay comentarios:

Publicar un comentario en la entrada